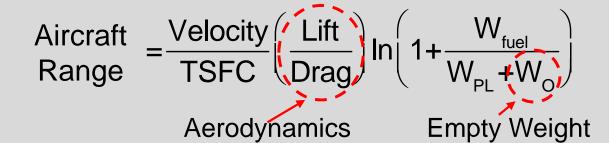


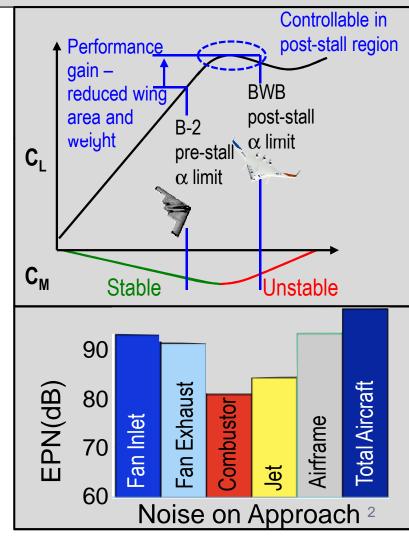
NASA's Current Plans for ERA Airframe Technology

Anthony Washburn
Project Engineer (Acting)
Airframe Technology Sub-project for ERA, NASA

Airframe Technology Focus Areas

Airframe system is 1st order effect




Targets:

- -ML/D
- Empty Weight
- Airframe Noise

General Technology Topics:

- Lightweight Structures
- Drag Reduction Technologies
- Flight Dynamics and Control
- Airframe Noise Reduction Technologies

ERA Project

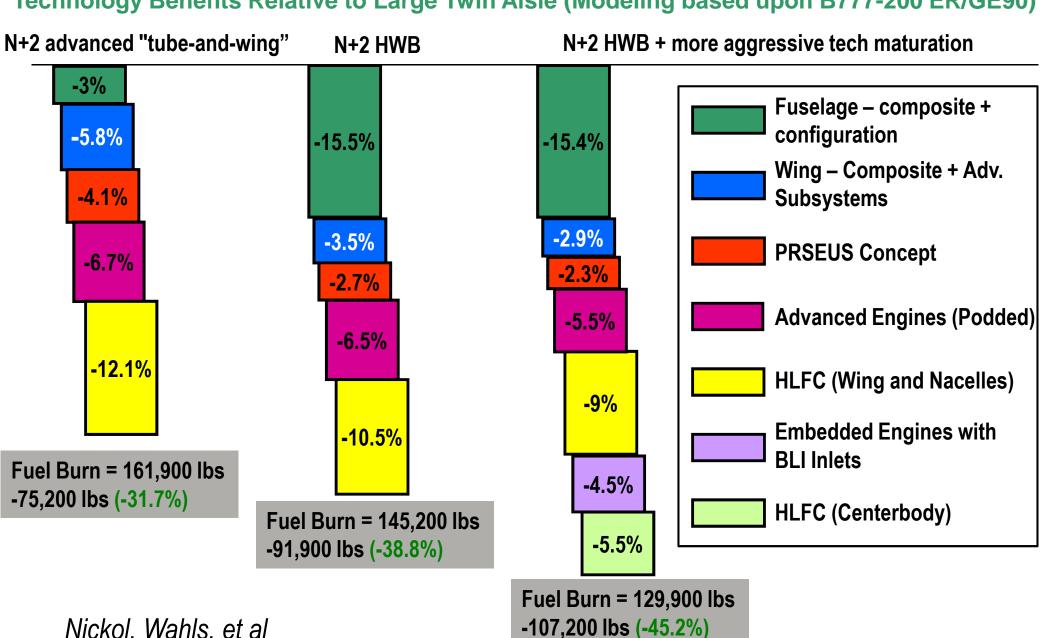
Goals and Metrics and System Studies

CORNERS OF THE TRADE SPACE	N+1 = 2015*** Technology Benefits Relative To a Single Aisle Reference Configuration	N+2 = 2020*** Technology Benefits Relative To a Large Twin Aisle Reference Configuration	N+3 = 2025*** Technology Benefits	
Noise (cum below Stage 4)	-32 dB	-42 dB	-71 dB	
LTO NO _x Emissions (below CAEP 6)	-60%	-75%	better than -75%	
Performance: Aircraft Fuel Burn	-33%**	-40%**	better than -70%	
Performance: Field Length	-33%	-50%	exploit metro-plex* concepts	

***Technology Readiness Level for key technologies = 4-6

- ** Additional gains may be possible through operational improvements
- * Concepts that enable optimal use of runways at multiple airports within the metropolitan area

ERA Approach


- Focused on N+2 Timeframe Fuel Burn, Noise, and NO_x System-level Metrics
- Focused on Advanced Multi-Discipline Based Concepts and Technologies
- Focused on Highly Integrated Engine/Airframe Configurations for Dramatic Improvements

ERA Project

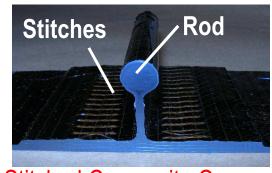
Fuel Burn (and CO₂) Reduction Goal

Technology Benefits Relative to Large Twin Aisle (Modeling based upon B777-200 ER/GE90)

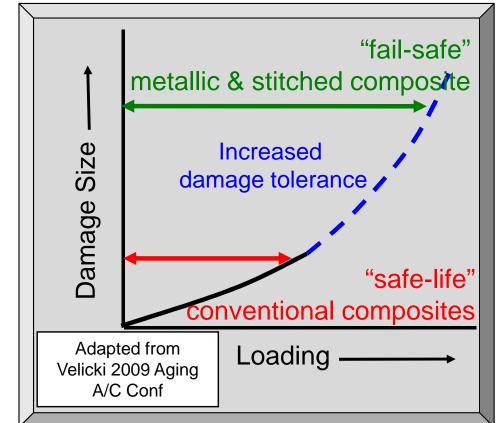
Nickol, Wahls, et al

Lightweight Structures

Technical Challenge


- Overcome limitations of primary composite structure designed like "black aluminum"
 - Tailored load path design reduced weight
 - Design for "fail-safe" instead of "safe-life"
 - Eliminate fastener stress concentrations

Stitched composites - enabling weight reduction with


load limit of metal

- Damage tolerance, durability, flexibility of stitched composites
- Suppress interlaminar failures, arrest damage, control damage propagation
- Capability for non-circular pressure vessels
 - Reduce wetted area, enable N+2 vehicle concepts
- Cabin noise propagation
 - Lightweight structure
 - Propulsion noise shielding

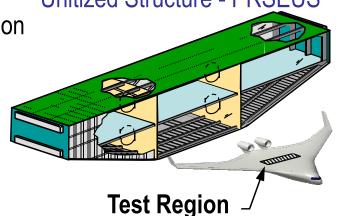
Stitched Composite Concept

Lightweight Structures

Technical Overview

Objective

 Explore/validate/characterize new stitched composite structural concept under realistic loads to achieve additional weight reduction

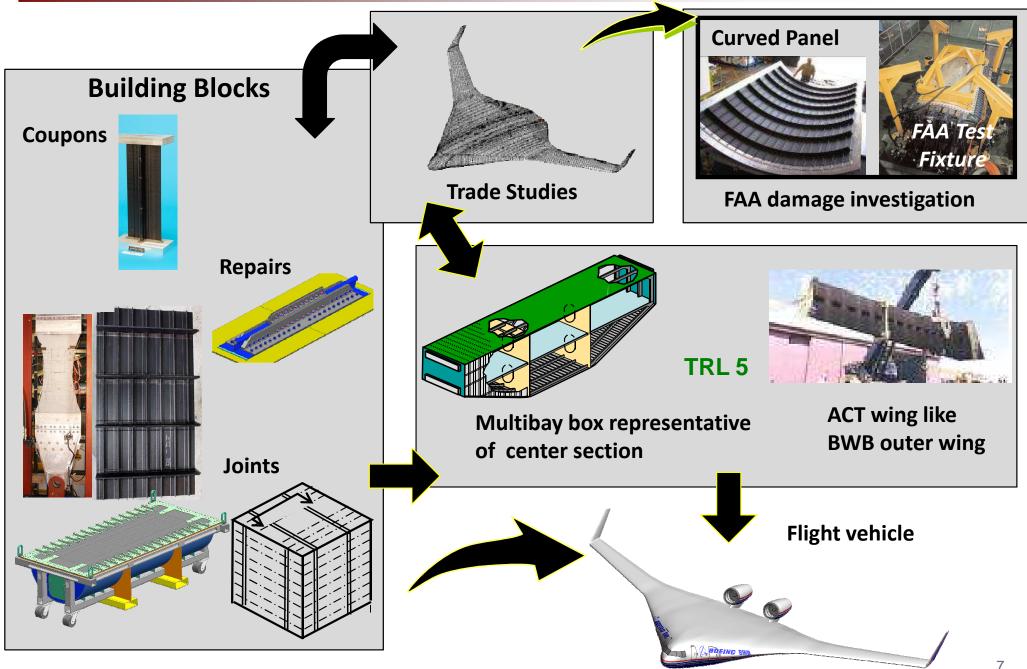

Approach

- Building block experiments on sub components, joints, cutouts
- Explore repair/maintenance, NDE methods
- Large scale pressurized multi-bay fuselage section under combined load
- Assess noise transmission properties and develop structural design criteria for cabin noise

Benefit

Validate damage-arresting characteristics under realistic loads.
 Expected 10% reduction in weight compared to conventional composite structural concepts. Extensible to wings, etc.

Pultruded Rod Stitched Efficient Unitized Structure - PRSEUS



Combined Loads Test Facility (COLTS)

FY10	FY11	FY12	FY13	3	FY14	FY15
Complete PRSEU Pressure an Curve Panel Tes	d Transmission d Assessment	Complete Multibay PRSEUS Tests	Design Criteria for Low Noise Lt Wt Structure	• stit	sibilities ched composite wing chnology integration (oustic liners, etc) able unique flight veh	laminar flow,

PRSEUS Development Roadmap

Flight Dynamics & Control

Technical Challenge

- Even conventional tube and wing aircraft flight control requires extensive wind tunnel testing
 - Half of cost associated with new aircraft development is in control system and integration
 - Most of control design done through empirical database developed over decades of incremental change
 - HWB is at embryonic stage
- Complex validation and verification to develop tools for design and pre-build control system necessary
- Determine stability and control characteristics of commercial HWB class vehicles
 - Meet airworthiness requirements with performance/acoustic benefits?
 - Meet ride quality expectations with performance/acoustic benefits?
- Adaptive controls for performance validated in flight

unconventional vehicles provide unique challenges

X-48B

Propulsion for X-48B and X-48C

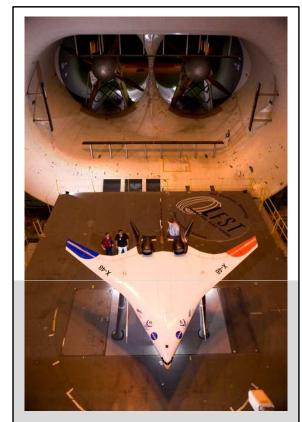
Flight Dynamics & Control

Technical Overview

Objective

 Explore/assess flight dynamics and control design space for HWB and derivatives with unique control effector and propulsion combinations

Approach


- Complete X48B baseline flight tests and demonstrate single surface
 PID
- Conduct wind tunnel and flight experiments with advanced propulsion approaches (X-48C, open rotor?)
- Develop adaptive control approaches to overcome unique HWB flying qualities challenges (ride quality, gust load alleviation, etc.)

Benefit

Data Analysis

Test

 Confidence to proceed to larger scale advanced vehicle concepts with light wing loading

X-48C Full-Scale S&C Test

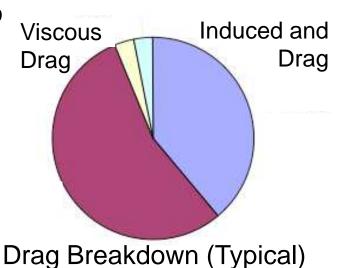
FY15

FY10		Y11	FY12	FY13		FY14	FY15
Complete X-48C 30' x 60'	Complete X- 48B Phase 1 Flight	Begin X-48C Flight Validation	Complete Intelliand Constrair Adaptive Con	igent ned	 other 	ilities experiments with ada control concepts in p tigation of lightweight	iloted simulation

Demo on X-48

• additional unconventional flight test vehicle

Drag Reduction

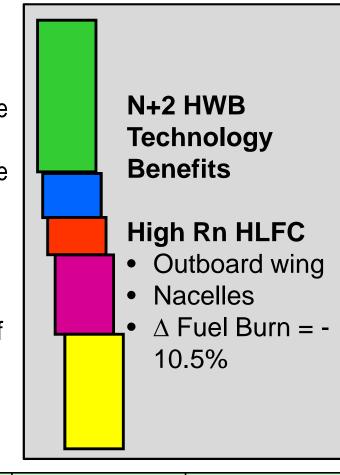

Technical Challenge

- ERA N+2 goal of 40% fuel burn = less cruise drag
 - Laminar Flow (LF) Technologies, wetted area reduction with active flow control (AFC), turbulent drag reduction
- LF Technology aerodynamic benefits are known, ERA break down practical barriers
 - Yet to be exploited on transonic transport aircraft
 - System integration trades high-lift performance, flight weight suction systems, structural stiffness
 - Robustness contamination, surface imperfection
 - Pre-flight assessment ability to ground test/assess across full-flight envelop at relevant conditions prior to flight
- AFC to improved control surface effectiveness
 - System integration trades pneumatic vs. electric actuation, actuation location, available authority
 - Flight weight actuation, fail-safe control

Active and Passive Concepts

Drag Reduction Technical Overview

Objective


Enable practical laminar flow application for transport aircraft

Approach

- Mature multiple approaches to laminar flow to enlarge trade space
- Address critical barriers to practical laminar flow application surface roughness, manufacturing, contamination, energy balance
- Explore synergy with other advanced technologies (e.g. composite structure, cruise slots, novel high lift systems, intelligent controls, etc.)

Benefit

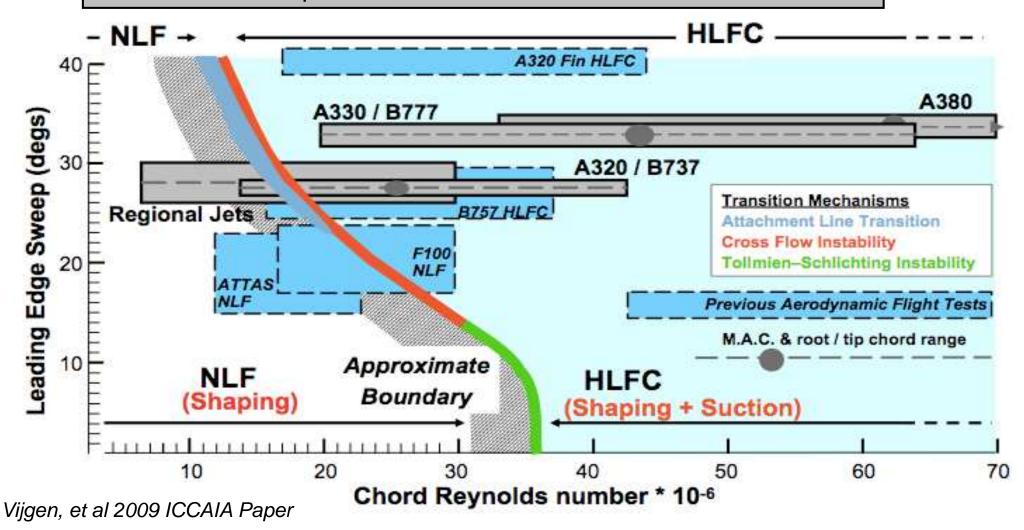
- Validated passive and active drag control technologies capable of enabling up to 15 % reductions in fuel burn.
- Expanded database and design trade space with higher fidelity trade information for transition prediction, manufacturing.
- Confidence to proceed to highly integrated flight test experiments

FY10 FY14 FY15 FY11 FY12 FY13 possibilities "in-service" flight tests of selected concept(s) Complete Flight **Evaluate Ground** Complete 20% Complete

Test Capability For NLF

DRE Glove Scale Test of AFC Rudder Flight Test

Weight HLFC System


- integrate with other techs (composites, cruise slot)
- re-wing research aircraft
- incorporate in design of flight vehicle testbed
- other drag reduction concepts beyond laminar

Multiple Approaches to Laminar Flow

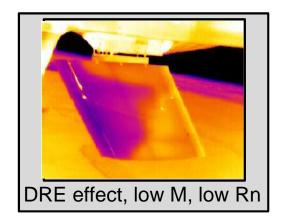
Phase 1

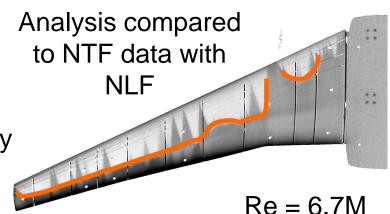
- Approach dependent on system requirements and trades
- System design decisions/trades
 - Mach/Sweep, Rn, Cp distribution, high-lift system
 - Aircraft components, and laminar extent of each

ERA Drag Reduction Technologies

Laminar Flow Technology Maturation

-Natural Laminar Flow


- Link transition prediction to aero design tools
- Assess and develop high Rn ground test capability


Hybrid Laminar Flow Control

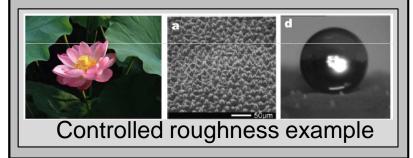
- Flight weight passive suction system
- Design, build, fly to show viable operational capability understand system trades, validate tools

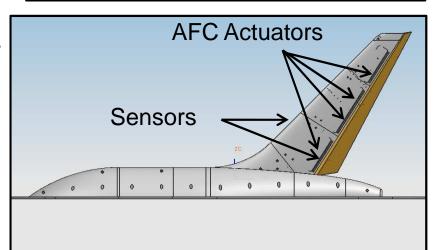
-Distributed Roughness Elements

- Fly wing glove with periodic DRE to Rn = 15M, M = 0.8
- Passive control to relax surface quality requirements

ERA Drag Reduction Technologies

ERA Phase 1

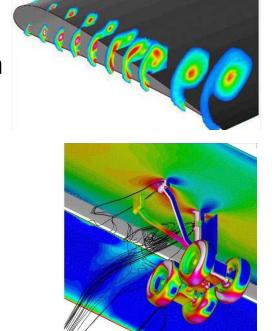

Laminar Flow Technology Maturation

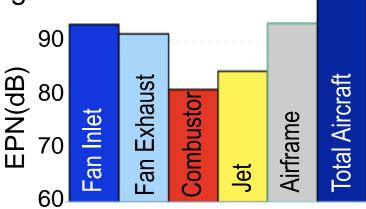

- Low-Surface Energy Coating
 - Demonstrate coatings for insect impact protection on NASA G-III
 - Develop abhesives with very low surface energy
 - Use surface engineering for controlled roughness to enhance hydrophobicity

Active Flow Control Maturation

- Increased On-Demand Rudder
 Effectiveness with AFC
 - Apply fluidic oscillating jets and/or synthetic jets near the rudder hinge line
 - Benefit is smaller vertical tail
 - Less weight and wetted area in cruise
 - AFC only needed for engine out
 - Experience gained for AFC certification in other applications

Classification	Contact Angle	Example
Hydrophilic	θ< 90	20
Hydrophobic	150>θ> 90	0
Super- Hydrophobic	θ> 150	S CO




Airframe Noise Reduction

Technical Challenge

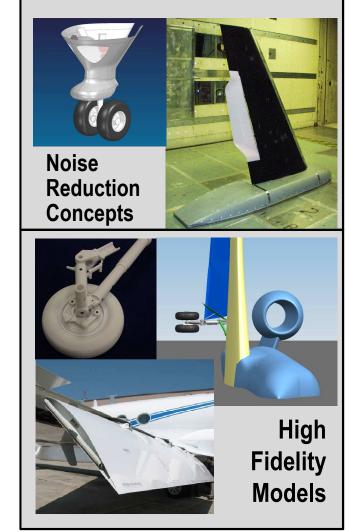
- Airframe noise not well understood or modeled
- Airframe noise reduction technology often conflicts with other requirements
 - Landing gear designed for performance/weight but generate much more noise
 - High lift slats/flaps generate noise
- Currently cannot accurately account for aircraft noise sources, interactions, installation effects
- Cannot meet N+2 goals with current technology
- Must reduce all three components to achieve significant reductions
 - Continuous mold line technology
 - Reasonable landing gear fairings

Noise on Approach

Airframe Noise Reduction

Technical Overview

Objective


- High fidelity measurements/modeling of structural, fluidic, and acoustic interactions for flap side edge, landing gear
- Develop quiet flaps and landing gear <u>without</u> performance penalties

Approach

- Flight test of CML flap on NASA G-III aircraft
- Wind tunnel campaign targeting landing gear and flap edge noise as well as gear/flap interactions.
- Flight test of flap edge concepts on Gulfstream G550
 - Improved microphone array technology used on flight test

Benefit

 Quantified technologies for airframe noise reduction on the order of 5-10 dB cum; enlarged design trade space for adv. low noise configurations

FY10 | FY11 | FY12 | FY13 | FY14 | FY15

Low Noise Concepts Tested in 14x22 Validate Low Noise Flap Edge and/or Gear Noise Concepts in Flight

possibilities

 large-scale or flight experiments on low noise vehicle with adv. airframe NR technologies

Concluding Remarks

- System Studies identify fuel burn improvements to meet ERA goals through
 - Weight reducing stitched composites structures
 - Practical application of laminar flow technologies
 - System-Level Approach
- Key Airframe System Technology Demonstrations
 - Multi-bay PRSEUS pressure/combined load test
 - High Reynolds number demonstrations of NLF, DRE, and HLFC laminar flow techniques to overcome practical barriers
 - Low-speed full envelop demonstrations of HWB concepts for robust flight control
 - Full-scale flight demonstrations of airframe noise reducing technologies for high-lift and landing gear
- Partnerships with industry are integral key to achieve ERA goals

